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Abstract

In this paper, the dynamic behavior of two parallel symmetric cracks in piezoelectric materials under harmonic anti-

plane shear waves is investigated by use of the non-local theory for permeable crack surface conditions. To overcome

the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the

problem to obtain the stress occurs near the crack tips. By means of the Fourier transform, the problem can be solved

with the help of two pairs of dual integral equations that the unknown variables are the jumps of the displacement along

the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided. Contrary

to the previous results, it is found that no stress and electric displacement singularity is present near the crack tip. The

non-local elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the

maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the frequency of

the incident wave, the distance between two cracks and the lattice parameter of the materials, respectively. Contrary to

the impermeable crack surface condition solution, it is found that the dynamic electric displacement for the permeable

crack surface conditions is much smaller than the results for the impermeable crack surface conditions. The results show

that the dynamic field will impede or enhance crack propagation in the piezoelectric materials at different stages of the

dynamic load.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials produce an electric field when deformed, and undergo deformation when sub-

jected to an electric field. The coupling nature of piezoelectric materials has attracted wide applications in

electric-mechanical and electric devices, such as electric-mechanical actuators, sensors and structures. When
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subjected to mechanical and electrical loads in service, these piezoelectric materials can fail prematurely due

to their brittleness and presence of defects or flaws produced during their manufacturing process. There-

fore, it is important to study the electro-elastic interaction and fracture behaviors of piezoelectric materials.

Moreover, it is known that the failure of solids results from the final propagation of the cracks, and in most
cases, the unstable growth of the crack is brought about by the external dynamic loads. So, the study of the

dynamic fracture mechanics of piezoelectric materials is much more importance in recent research, espe-

cially when multiple cracks are involved. From the viewpoint of fracture dynamics, the response of cracks

under dynamic loads is more complex, particularly for piezoelectricity. In such a case, elastic wave is

generated throughout the structure. Near the cracks, these waves are reflected and refracted causing the

local stress to increase beyond its corresponding static value. This could lead to the unstable motion of the

crack and eventually the fracture of the structure.

In the theoretical studies of crack problems, several different electric boundary conditions at the crack
surfaces have been proposed by numerous researchers. For example, for the sake of analytical simplifi-

cation, the assumption that the crack surfaces are impermeable to electric fields was adopted by Deeg

(1980), Pak (1990, 1992), Sosa and Pak (1990), Sosa (1991, 1992), Suo et al. (1992), Gao et al. (1997). In this

model, the assumption of the impermeable cracks refers to the fact that the crack surfaces are free of surface

charge and thus the electric displacement vanishes insides the crack. In fact, cracks in piezoelectric materials

consist of vacuum, air or some other gas. This requires that the electric fields can propagate through the

crack, so the electric displacement component perpendicular to the crack surfaces should be continuous

across the crack surfaces. Along this line, Zhang and Hack (1992) analyzed crack problems in piezoelectric
materials. In addition, usually the conducting cracks which are filled with conducting gas or liquid are also

applied to be a kind of simplified cracks models in piezoelectric materials by many researchers, such as

McMeeking (1989) and Suo (1993). Recently, Dunn (1994), Zhang and Tong (1996), and Sosa and Khu-

toryansky (1999) avoided the common assumption of electric impermeability and utilized more accurate

electric boundary conditions at the rim of an elliptical flaw to deal with anti-plane problems in piezo-

electricity. They analyzed the effects of electric boundary conditions at the crack surfaces on the fracture

mechanics of piezoelectric materials. It is interesting to note that very different results were obtained by

changing the boundary conditions. Most recently, Soh et al. (2000) have investigated the behavior of a bi-
piezoelectric ceramic layer with an interfacial crack by using the dislocation density function and the

singular integral equation method for two different crack surface boundary conditions, respectively, i.e.

permeable and impermeable. However, these solutions contain stress singularity. This is not reasonable

according to the physical nature. To overcome the stress singularity in the classical elastic theory, Eringen

(Eringen et al., 1977, Eringen, 1978, 1979) used non-local theory to discuss the state of stress near the tip of

a sharp line crack in an elastic plate subject to uniform tension, shear and anti-plane shear. These solutions

did not contain any stress singularity, thus resolving a fundamental problem that has remained unsolved for

over many years. This enables us to employ the maximum stress hypothesis to deal with fracture problems
in a natural way. Eringen (Eringen, 1984) has presented the general theory of non-local piezoelectricity.

Recently, the same problems have been resolved in Zhou�s papers (Zhou et al., 1998a, 1999b) by using the
Schmidt method. In papers (Zhou et al., 1999a; Zhou et al., 1998b; Zhou et al., 1999c; Zhou and Shen,

1999; Zhou and Jia, 2000; Zhou et al., 2001), the problems for a crack or two cracks were investigated in the

elastic materials or in the piezoelectric materials by use of non-local theory. To our knowledge, the dynamic

electro-elastic behavior of the piezoelectric materials with two parallel cracks subjected to harmonic anti-

plane shear waves has not been studied by use of non-local theory for permeable crack surface boundary

conditions.
In the present paper, the dynamic behavior of two parallel symmetric cracks subjected to harmonic anti-

plane shear waves in piezoelectric materials is investigated by means of non-local theory for permeable

crack face conditions. The traditional concept of linear elastic fracture mechanics and non-local theory are

extended to include the piezoelectric effects. To overcome the mathematical difficulties, one has to accept
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some assumptions as in Nowinski�s works (Nowinski 1984a,b), a one-dimensional non-local kernel function
is used instead of a two-dimensional kernel function for the anti-plane problem to obtain the stress near at

the crack tips. Certainly, the assumption should be further investigated to satisfy the realistic condition.

Fourier transform is applied and a mixed boundary value problem is reduced to two pairs of dual integral
equations that the unknown variables are the jumps of the displacement along the crack surfaces. In solving

the dual integral equations, the jumps of the crack surface displacement are expanded in a series of Jacobi

polynomials. The Schmidt method (Morse and Feshbach, 1958) is used to obtain the solution. This process

is quite different from that adopted in previous works (Han and Wang, 1999; Deeg, 1980; Pak, 1992; Sosa,

1992; Suo et al., 1992; Park and Sun, 1995; Zhang and Tong, 1996; Gao et al., 1997; Wang, 1992; Narita

and Shindo, 1998; Chen et al., 1999; Shen et al., 1999; Shen et al., 2000; Kim and Jones, 1996; Beom and

Atluri, 1996; Qin and Yu, 1997; Soh et al., 2000; Eringen et al., 1977; Eringen, 1978, 1979; Yu and Chen,

1998). As expected, the solution in this paper does not contain the stress and electric displacement sin-
gularity at the crack tip, thus clearly indicating the physical nature of the problem.

2. Basic equations of non-local piezoelectric materials

For the anti-plane shear problem, the basic equations of linear, homogeneous, isotropic, non-local piezo-

electric materials, with vanishing body force are (see e.g. Eringen, 1979; Shindo et al., 1996)

osxz
ox

þ osyz
oy

¼ q
o2w
ot2

; ð1Þ

oDx
ox

þ oDy
oy

¼ 0; ð2Þ

skzðX ; tÞ ¼
Z
V
½c044ðjX 0 � X jÞw;kðX 0; tÞ þ e015ðjX 0 � X jÞ/;kðX 0; tÞ	dV ðX 0Þ ðk ¼ x; yÞ; ð3Þ

DkðX ; tÞ ¼
Z
V
½e015ðjX 0 � X jÞw;kðX 0; tÞ � e011ðjX 0 � X jÞ/;kðX 0; tÞ	dV ðX 0Þ ðk ¼ x; yÞ; ð4Þ

where the only difference with classical elastic theory and the piezoelectric theory is in the stress and the

electric displacement constitutive equations (3) and (4) in which the stress szkðX ; tÞ and the electric dis-
placement DkðX ; tÞ at a point X depends on w;kðX ; tÞ and /;kðX ; tÞ, at all points of the body. w and / are the
mechanical displacement and electric potential. q is the density of the piezoelectric materials. For homo-
geneous and isotropic piezoelectric materials there exist only three material parameters, c044ðjX 0 � X jÞ,
e015ðjX 0 � X jÞ and e011ðjX 0 � X jÞ which are functions of the distance jX 0 � X j. The integrals in (3) and (4) are
over the volume V of the body enclosed within a surface oV . As discussed in the papers (see e.g. Eringen,
1974, 1977), it can be assumed in the form of c044ðjX 0 � X jÞ, e015ðjX 0 � X jÞ and e011ðjX 0 � X jÞ for which the
dispersion curves of plane elastic waves coincide with those known in lattice dynamics. Among several

possible curves the following has been found to be very useful

ðc044; e015; e011Þ ¼ ðc44; e15; e11ÞaðjX 0 � X jÞ; ð5Þ

aðjX 0 � X jÞ is known as the influence function, and is the functions of the distance jX 0 � X j. c44, e15 and e11
are shear modulus, piezoelectric coefficient and dielectric parameter, respectively. Substitution of Eq. (5)

into Eqs. (3) and (4) yields
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skzðX ; tÞ ¼
Z
V

aðjX 0 � X jÞrkzðX 0; tÞdV ðX 0Þ ðk ¼ x; yÞ; ð6Þ

DkðX ; tÞ ¼
Z
V

aðjX 0 � X jÞDckðX 0; tÞdV ðX 0Þ ðk ¼ x; yÞ; ð7Þ

where

rkz ¼ c44w;k þ e15/;k ðk ¼ x; yÞ; ð8Þ

Dck ¼ e15w;k � e11/;k ðk ¼ x; yÞ: ð9Þ

The expressions (8) and (9) are the classical constitutive equations.

3. The crack model

It is assumed that there are two parallel symmetric cracks of length 2l in the piezoelectric materials as
shown in Fig. 1. h is the distance between the two cracks. The piezoelectric boundary-value problem for

anti-plane shear is considerably simplified if we consider only the out-of-plane displacement and the in-

plane electric fields. In this paper, the harmonic anti-plane shear wave is vertically incident. Let x be the

circular frequency of the incident wave. �s0 is a magnitude of the incident wave. In what follows, the time-
dependence of all field quantities assumed to be of the form e�ixt will be suppressed as commonly used

technique. As discussed in Soh�s (Soh et al., 2000), Srivastava�s (Srivastava et al., 1983) and Eringen�s
(Eringen, 1979) works, since no opening displacement exists for the present anti-plane problem, the crack

surfaces can be assumed to be in perfect contact. Accordingly, permeable condition will be enforced in the

present study, i.e. both the electric potential and the normal electric displacement are assumed to be

continuous across the crack surfaces. So the boundary conditions of the present problem are (in this paper,

we only consider the perturbation stress field and the perturbation electric displacement field):

wð1Þ ¼ wð2Þ; sð1Þyz ¼ sð2Þyz ; /ð1Þ ¼ /ð2Þ; Dð1Þ
y ¼ Dð2Þ

y ; y ¼ h; jxj > l; ð10Þ

wð2Þ ¼ wð3Þ; sð2Þyz ¼ sð3Þyz ; /ð2Þ ¼ /ð3Þ; Dð2Þ
y ¼ Dð3Þ

y ; y ¼ 0; jxj > l; ð11Þ

sð1Þyz ¼ sð2Þyz ¼ �s0; /ð1Þ ¼ /ð2Þ; Dð1Þ
y ¼ Dð2Þ

y ; y ¼ h; jxj6 l; ð12Þ
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Fig. 1. Two parallel symmetric cracks in a piezoelectric material.
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sð2Þyz ¼ sð3Þyz ¼ �s0; /ð2Þ ¼ /ð3Þ; Dð2Þ
y ¼ Dð3Þ

y ; y ¼ 0; jxj6 l; ð13Þ

wð1Þ ¼ wð3Þ ¼ 0 for ðx2 þ y2Þ1=2 ! 1; wð2Þ ¼ 0; for jxj ! 1; ð14Þ
where szk, Dk ðk ¼ x; yÞ are the anti-plane shear stress and in-plane electric displacement, respectively. w and
/ are the mechanical displacement and the electric potential. Note that all quantities with superscript k
(k ¼ 1; 2; 3) refer to the upper half plane 1, the layer 2 and the lower half plane 3 as in Fig. 1, respectively. In
this paper, we only consider positive s0. Substituting Eqs. (6)–(9) into Eqs. (1) and (2), respectively, using
Green–Gauss theorem leads to (see e.g. Eringen, 1979):Z

V

Z
aðjx0 � xj; jy 0 � yjÞ½c44r2wðx0; y0; tÞ þ e15r2/ðx0; y 0; tÞ	dx0 dy 0 �

Z l

�l
aðjx0 � xj; 0Þ ryzðx0; 0; tÞ dx0

�
Z l

�l
aðjx0 � xj; hÞ ryzðx0; h; tÞ dx0 ¼ q

o2w
ot2

; ð15Þ

Z
V

Z
aðjx0 � xj; jy 0 � yjÞ½e15r2wðx0; y0; tÞ � e11r2/ðx0; y 0; tÞ	dx0 dy 0 �

Z l

�l
aðjx0 � xj; 0Þ Dcyðx0; 0; tÞ dx0

�
Z l

�l
aðjx0 � xj; hÞ Dcyðx0; h; tÞ dx0 ¼ 0; ð16Þ

where the boldface bracket indicates a jump at the crack line, i.e.

ryzðx0; 0; tÞ ¼ ryzðx0; 0þ; tÞ � ryzðx0; 0�; tÞ;
ryzðx0; h; tÞ ¼ ryzðx0; hþ; tÞ � ryzðx0; h�; tÞ;
Dcyðx0; 0; tÞ ¼ Dcyðx0; 0þ; tÞ � Dcyðx0; 0�; tÞ;
Dcyðx0; h; tÞ ¼ Dcyðx0; hþ; tÞ � Dcyðx0; h�; tÞ:

r2 ¼ o2=ox2 þ o2=oy2 is the two-dimensional Laplace operator. From the continuous conditions of the

stress and the electric displacement, it can be obtained

ryzðx; y; tÞ ¼ 0; Dcyðx; y; tÞ ¼ 0: ð17Þ

Hence the line integrals in (15) and (16) vanish. By taking the Fourier cosine transform of (15) and (16) with

respect to x0, it can be shown that the general solutions of (15) and (16) are identical to that ofZ 1

0

�aaðjsj; jy 0 � yjÞ c44
d2�wwðs; y0; tÞ

dy2

"(
� s2�wwðs; y0; tÞ

#
þ e15

d2 �//ðs; y0; tÞ
dy2

"
� s2 �//ðs; y0; tÞ

#)
dy0 ¼ qx2�ww;

ð18Þ

Z 1

0

�aaðjsj; jy 0 � yjÞ e15
d2�wwðs; y0; tÞ

dy2

"(
� s2�wwðs; y0; tÞ

#
� e11

d2 �//ðs; y0; tÞ
dy2

"
� s2 �//ðs; y0; tÞ

#)
dy0 ¼ 0: ð19Þ

Here a superposed bar indicates the Fourier cosine transform, i.e.

�ff ðsÞ ¼
Z 1

0

f ðxÞ cosðsxÞdx; f ðxÞ ¼ 2
p

Z 1

0

�ff ðsÞ cosðsxÞds:

What now remains is to solve the integrodifferential equations (18) and (19) for the function w and /. It is
impossible to obtain a rigorous solution at the present stage for Eqs. (18) and (19). It seems obvious that in

the solution of such a problem we encounter serious if not unsurmountable mathematical difficulties and
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will have to resort to an approximate procedure. In the given problem, according to the assumptions as in

Nowinski�s works (Nowinski 1984a,b), the non-local interaction in y-direction can be ignored. It can be
given

�aaðjsj; jy 0 � yjÞ ¼ �aa0ðsÞdðy0 � yÞ: ð20Þ
From Eqs. (18) and (19), we have

�aa0ðsÞ c44
d2�wwðs; y; tÞ
dy2

"(
� s2�wwðs; y; tÞ

#
þ e15

d2 �//ðs; y; tÞ
dy2

"
� s2 �//ðs; y; tÞ

#)
¼ qx2�ww; ð21Þ

e15
d2�wwðs; y; tÞ
dy2

"
� s2�wwðs; y; tÞ

#
� e11

d2 �//ðs; y; tÞ
dy2

"
� s2 �//ðs; y; tÞ

#
¼ 0: ð22Þ

The general solutions of the Eqs. (21) and (22) satisfying (14) are, respectively:

wð1Þðx; y; tÞ ¼ 2
p

Z 1

0

A1ðsÞe�cy cosðsxÞds;

/ð1Þðx; y; tÞ ¼ e15
e11
wð1Þðx; y; tÞ þ 2

p

Z 1

0

B1ðsÞe�sy cosðsxÞds;

8>><
>>: ðyP hÞ ð23Þ

wð2Þðx; y; tÞ ¼ 2
p

Z 1

0

½A2ðsÞe�cy þ B2ðsÞecy 	 cosðsxÞds;

/ð2Þðx; y; tÞ ¼ e15
e11
wð2Þðx; y; tÞ þ 2

p

Z 1

0

½C2ðsÞe�sy þ D2ðsÞesy 	 cosðsxÞds;

8>><
>>: ðhP yP 0Þ ð24Þ

wð3Þðx; y; tÞ ¼ 2
p

Z 1

0

A3ðsÞecy cosðsxÞds;

/ð3Þðx; y; tÞ ¼ e15
e11
wð3Þðx; y; tÞ þ 2

p

Z 1

0

B3ðsÞesy cosðsxÞds;

8>><
>>: ðy6 0Þ ð25Þ

where c2 ¼ s2 � x2=c2�aa0ðsÞ, l ¼ c44 þ ðe215=e11Þ, c2 ¼ l=q is the stress wave velocity in the piezoelectric
materials. A1ðsÞ, B1ðsÞ, A2ðsÞ, B2ðsÞ, C2ðsÞ, D2ðsÞ, A3ðsÞ and B3ðsÞ are to be determined from the boundary
conditions. So from Eqs. (6)–(9), we have

sð1Þyz ¼ � 2
p

Z 1

0

�aa0ðsÞ½lcA1ðsÞe�cy þ e15sB1ðsÞe�sy 	 cosðsxÞds;

Dð1Þ
y ¼ 2

p

Z 1

0

�aa0ðsÞe11sB1ðsÞe�sy cosðsxÞds;

8>><
>>: ðyP hÞ ð26Þ

sð2Þyz ¼ � 2
p

Z 1

0

�aa0ðsÞflc½A2ðsÞe�cy � B2ðsÞecy 	 þ e15s½C2ðsÞe�sy � D2ðsÞesy 	g cosðsxÞds;

Dð2Þ
y ¼ 2

p

Z 1

0

�aa0ðsÞe11s½C2ðsÞe�sy � D2ðsÞesy 	 cosðsxÞds;

8>><
>>: ðhP yP 0Þ

ð27Þ

sð3Þyz ¼ 2
p

Z 1

0

�aa0ðsÞ½lcA3ðsÞecy þ e15sB3ðsÞesy 	 cosðsxÞds;

Dð3Þ
y ¼ � 2

p

Z 1

0

�aa0ðsÞe11sB3ðsÞesy cosðsxÞds:

8>><
>>: ðy6 0Þ ð28Þ
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To solve the problem, the jump functions of the crack surface displacements and the electric potentials are

defined as follows:

f1ðxÞ ¼ wð1Þðx; hþ; tÞ � wð2Þðx; h�; tÞ; ð29Þ

f/1ðxÞ ¼ /ð1Þðx; hþ; tÞ � /ð2Þðx; h�; tÞ; ð30Þ

f2ðxÞ ¼ wð2Þðx; 0þ; tÞ � wð3Þðx; 0�; tÞ; ð31Þ

f/2ðxÞ ¼ /ð2Þðx; 0þ; tÞ � /ð3Þðx; 0�; tÞ: ð32Þ
Substituting Eqs. (23)–(25) into Eqs. (29)–(32), and applying the Fourier transform and the boundary

conditions, we have

�ff1ðsÞ ¼ ½A1ðsÞ � A2ðsÞ	e�ch � B2ðsÞech; ð33Þ

�ff/1ðsÞ ¼
e15
e11

�ff1ðsÞ þ ½B1ðsÞ � C2ðsÞ	e�sh � D2ðsÞesh ¼ 0; ð34Þ

�ff2ðsÞ ¼ A2ðsÞ þ B2ðsÞ � A3ðsÞ; ð35Þ

�ff/2ðsÞ ¼
e15
e11

�ff2ðsÞ þ C2ðsÞ þ D2ðsÞ � B3ðsÞ ¼ 0: ð36Þ

Substituting Eqs. (26)–(28) into Eqs. (10)–(13), it can be obtained

lcA1ðsÞe�ch þ e15sB1ðsÞe�sh ¼ lc½A2ðsÞe�ch � B2ðsÞech	 þ e15s½C2ðsÞe�sh � D2ðsÞesh	; ð37Þ

½B1ðsÞ � C2ðsÞ	e�2sh þ D2ðsÞ ¼ 0; ð38Þ

lc½A2ðsÞ � B2ðsÞ	 þ e15s½C2ðsÞ � D2ðsÞ	 ¼ �lcA3ðsÞ � e15sB3ðsÞ; ð39Þ

C2ðsÞ � D2ðsÞ þ B3ðsÞ ¼ 0: ð40Þ
By solving eight equations (33)–(40) with eight unknown functions A1ðsÞ, B1ðsÞ, A2ðsÞ, B2ðsÞ, C2ðsÞ, D2ðsÞ,
A3ðsÞ, B3ðsÞ and applying the boundary conditions (10)–(13), it can be obtained:Z 1

0

�aa0ðsÞ lc½�ff1ðsÞ



þ e�ch�ff2ðsÞ	 �
e215
e11
s½�ff1ðsÞ þ �ff2ðsÞe�sh	

�
cosðsxÞds ¼ ps0; jxj6 l; ð41Þ

Z 1

0

�aa0ðsÞ lc½�ff2ðsÞ



þ e�ch�ff1ðsÞ	 �
e215
e11
s½�ff2ðsÞ þ �ff1ðsÞe�sh	

�
cosðsxÞds ¼ ps0; jxj6 l; ð42Þ

Z 1

0

�ff1ðsÞ cosðsxÞds ¼ 0; jxj > l; ð43Þ

Z 1

0

�ff2ðsÞ cosðsxÞds ¼ 0; jxj > l: ð44Þ

From Eqs. (41)–(44), it can be found

�ff1ðsÞ ¼ �ff2ðsÞ ) f1ðxÞ ¼ f2ðxÞ; sð1Þyz ðx; h; tÞ ¼ sð2Þyz ðx; h; tÞ ¼ sð2Þyz ðx; 0; tÞ ¼ sð3Þyz ðx; 0; tÞ ¼ syz: ð45Þ

So from Eqs. (26)–(28), it can be obtained Dð1Þ
y ðx; h; tÞ ¼ Dð2Þ

y ðx; h; tÞ ¼ Dð2Þ
y ðx; 0; tÞ ¼ Dð3Þ

y ðx; 0; tÞ ¼ Dy . To
determine the unknown functions �ff1ðsÞ and �ff2ðsÞ, the dual integral equations (41)–(44) must be solved.
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4. Solution of the dual integral equations

Here, the only difference between the classical and non-local equations is in the introduction of the

function �aa0ðsÞ, it is logical to utilize the classical solution to convert the system equations (41)–(44) to an
integral equation of the second kind which is generally better behaved. If �aa0ðsÞ ¼ 1 (the classical elastic
case), Eqs. (41)–(44) reduce to the dual integral equations for the same problem in classical elasticity. The

dual integral equations (41)–(44) cannot be transformed into a Fredholm integral equation of the second

kind (Eringen, 1979), because the kernel of the Fredholm integral equation of the second kind in the paper

of Eringen (Eringen, 1979) is divergent. The Fredholm integral equation of the second kind in the paper of

Eringen (Eringen, 1979) can be rewritten as following

hðxÞ þ
Z 1

0

hðuÞLðx; uÞdu ¼ gðxÞ;

where gðxÞ is known function, hðxÞ is unknown function.
The kernel of the above Fredholm integral equation of the second kind can be written as follows:

Lðx; uÞ ¼ ðxuÞ
1
2

Z 1

0

tkðetÞJ0ðxtÞJ0ðutÞdt; 06 x; u6 1;

where JnðxÞ is the Bessel function of order n.

kðetÞ ¼ �UðetÞ; lim
t!1

kðetÞ 6¼ 0 for e ¼ a
2bl

6¼ 0;

where l is the length of the crack,

J0ðxÞ �
ffiffiffiffiffi
2

px

r
cos x

�
� 1
4

p

�
for x� 0:

The limit of tkðetÞJ0ðxtÞJ0ðutÞ is not equal to zero for t! 1. So the kernel Lðx; uÞ in Eringen�s paper is
divergent (see e.g. Eringen, 1979). Of course, the dual integral equations can be considered to be a single

integral equation of the first kind with a discontinuous kernel (see e.g. Eringen et al., 1977). It is well-known

in the literature that integral equations of the first kind are generally ill-posed in sense of Hadamard, i.e.

small perturbations of the data can yield arbitrarily large changes in the solution. This makes the numerical
solution of such equations quite difficult. In this paper, Schmidt method (Morse and Feshbach, 1958) was

used to overcome the difficulty. As discussed by Eringen�s (Eringen et al., 1977; Eringen, 1977, 1978, 1979,
1983) and Nowinski�s (Nowinski 1984a,b) papers, it was taken

a0 ¼ v0 expð�ðb=aÞ2ðx0 � xÞ2Þ; v0 ¼ b=a
ffiffiffi
p

p
; ð46Þ

where b is a constant (here b is a constant appropriate to each material) and a is the lattice parameter. So
we obtain

�aa0ðsÞ ¼ expð�ðsaÞ2=ð2bÞ2Þ; ð47Þ
and �aa0ðsÞ ¼ 1 for the limit a! 0, so that Eqs. (41)–(44) reduce to the well-known equation of the classical

theory. Here the Schmidt method can be used to solve the dual integral equations (41)–(44). The gap

functions of the crack surface displacement are represented by the following series:

f1ðxÞ ¼ wð1Þðx; 0þ; tÞ � wð2Þðx; 0�; tÞ ¼
X1
n¼1
anP

1
2
;1
2ð Þ

2n�2
x
l

� �
1

�
� x

2

l2

�1
2

; for� l6 x6 l; y ¼ 0; ð48Þ

f1ðxÞ ¼ wð1Þðx; 0þ; tÞ � wð2Þðx; 0�; tÞ ¼ 0; for jxj > l; y ¼ 0; ð49Þ
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where an is unknown coefficients to be determined and P ð1=2;1=2Þ
n ðxÞ is a Jacobi polynomial (Gradshteyn and

Ryzhik, 1980). The Fourier transform of Eq. (48) is (Erdelyi, 1954)

�ff1ðsÞ ¼
X1
n¼1
anGn

1

s
J2n�1ðslÞ; Gn ¼ 2

ffiffiffi
p

p
ð�1Þn�1

C 2n� 1
2

� �
ð2n� 2Þ! ; ð50Þ

where CðxÞ and JnðxÞ are the Gamma and Bessel functions, respectively.
Substituting Eq. (50) into Eqs. (41)–(44), respectively, the Eqs. (43) and (44) can be automatically sat-

isfied. Then Eqs. (41) and (42) reduce to the form,X1
n¼1
anGn

Z 1

0

�aa0ðsÞ l
c
s
½1



þ e�ch	 � e

2
15

e11
½1þ e�sh	

�
J2n�1ðslÞ cosðsxÞds ¼ ps0: ð51Þ

For a large s, the integrands of the Eq. (51) are almost decreases exponentially. Hence they can be evaluated
numerically by Filon�s method (see e.g. Amemiya and Taguchi, 1969). Eq. (51) can now be solved for the
coefficients an by the Schmidt method (Morse and Feshbach, 1958). For brevity, the Eq. (51) can be re-
written asX1

n¼1
anEnðxÞ ¼ UðxÞ; �l < x < l; ð52Þ

where EnðxÞ and UðxÞ are known functions and the coefficients an are to be determined. A set of functions
PnðxÞ which satisfy the orthogonality conditionZ l

�l
PmðxÞPnðxÞdx ¼ Nndmn; Nn ¼

Z l

�l
P 2n ðxÞdx ð53Þ

can be constructed from the function, EnðxÞ, such that

PnðxÞ ¼
Xn
i¼1

Min
Mnn

EiðxÞ; ð54Þ

where Mij is the cofactor of the element dij of Dn, which is defined as

Dn ¼

d11; d12; d13; . . . ; d1n
d21; d22; d23; . . . ; d2n
d31; d32; d33; . . . ; d3n
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
dn1; dn2; dn3; . . . ; dnn

2
666666664

3
777777775
; dij ¼

Z l

�l
EiðxÞEjðxÞdx: ð55Þ

Using Eqs. (52)–(55), we obtain

an ¼
X1
j¼n
qj
Mnj
Mjj

with qj ¼
1

Nj

Z l

�l
UðxÞPjðxÞdx: ð56Þ

5. Numerical calculations and discussion

From the works (see e.g. Itou, 1978, 1979; Zhou et al., 1999b; Zhou et al., 1998b; Zhou et al., 1999c;

Zhou and Shen, 1999; Zhou and Jia, 2000), it can be seen that the Schmidt method is performed satis-

factorily if the first ten terms of the infinite series of Eq. (52) are retained. The behavior of the stress stays
steady with the increasing number of terms in (52). The coefficients an are known, so that the entire stress
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field and the electric displacement can be obtained. However, in fracture mechanics, it is important to

determine the dynamic perturbation stress syz and the perturbation electric displacement Dy in the vicinity
of the crack�s tips. syz and Dy along the crack line can be expressed respectively as

syz ¼ sð1Þyz ðx; 0; tÞ ¼ � 1
p

X1
n¼1
anGn

Z 1

0

�aa0ðsÞ l
c
s
½1



þ e�ch	 � e

2
15

e11
½1þ e�sh	

�
J2n�1ðslÞ cosðxsÞds; ð57Þ

Dy ¼ Dð1Þ
y ðx; 0; tÞ ¼ � e15

p

X1
n¼1
anGn

Z 1

0

�aa0ðsÞ½1þ e�sh	J2n�1ðslÞ cosðxsÞds: ð58Þ

So long as the lattice parameter a 6¼ 0, the semi-infinite integration and the series in Eqs. (57) and (58) are
convergent for any variable x. Eqs. (57) and (58) give finite stress and electric displacement all along y ¼ 0,
so there are no stress and the electric displacement singularity at the crack tips. However, for the lattice

parameter a ¼ 0, �aa0ðsÞ ¼ 1, we have the classical stress singularity at the crack tips. At �l < x < l, sð1Þyz =s0 is
very close to unity, and for x > l, sð1Þyz =s0 possesses finite values diminishing from a finite value at x ¼ l to
zero at x ¼ 1. Since a=2bl > 1=100 represents a crack length of less than 100 atomic distances (as stated by
Eringen, 1979), and such submicroscopic sizes other serious questions arise regarding the interatomic ar-

rangements and force laws, we do not pursue solutions valid at such small crack sizes. The semi-infinite

numerical integrals, which occur, are evaluated easily by Filon�s method (see e.g. Amemiya and Taguchi,
1969) and Simpson�s methods because of the rapid diminution of the integrands. In all computation, the
piezoelectric materials are assumed to be the commercially available piezoelectric PZT-5H. The piezo-

electric material constants of PZT-5H are c44 ¼ 2:3ð�1010 N/m2), e15 ¼ 17:0 (c/m2) and e11 ¼ 150:4ð�10�10
C/Vm). The results of the dynamic stress field and the dynamic electric displacement field are plotted in

Figs. 2–14. The results as shown in Figs. 2–14 are all of the problem that the electric boundary conditions

are permeable. In Figs. 8 and 10, ryz and Dcy represent the local stress and the local electric displacement,
respectively. The following observations are very significant:

(i) The stress at the crack tip becomes infinite as the lattice parameter a! 0. It is the classical continuum
limit of square root singularity. This can be shown from Eqs. (41)–(44). For the lattice parameter

a! 0, �aa0ðsÞ ¼ 1, Eqs. (41)–(44) will reduce to the dual integral equations for the same problem in clas-
sical piezoelectric materials. However, the stress and the electric displacement singularity are present at

the crack tip in the local piezoelectric materials problem as well known.

(ii) For the a=b ¼ constant, viz., the atomic distance does not change, the value of the stress concentrations
at the crack tip increase with increasing of the crack length (a=2bl will decrease with increasing of the
crack length l). Experiments indicate that the piezoelectric materials with smaller cracks are more re-
sistant to fracture than those with larger cracks.

0 1 2 3

18

20

22

τ y
z/

τ 0

h/l

Fig. 2. The stress at the crack tip versus h=l for l ¼ 1:0, a=2bl ¼ 0:0005, xl=c ¼ 0:2.
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Fig. 3. The electric displacement at the crack tip versus h=l for xl=c ¼ 0:2, a=2bl ¼ 0:0005, l ¼ 1:0.
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Fig. 4. The stress at the crack tip versus l for xl=c ¼ 0:2, a=2bl ¼ 0:0005, h=l ¼ 0:6.
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Fig. 5. The electric displacement at the crack tip versus l for xl=c ¼ 0:2, a=2bl ¼ 0:0005, h=l ¼ 0:6.
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Fig. 6. The stress at the crack tip versus h=l for l ¼ 1:0, a=2bl ¼ 0:001, xl=c ¼ 0:2.
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(iii) The significance of this result is that the fracture criteria are unified at both the macroscopic and micro-

scopic scales, viz., it may solve the problem of any scale cracks (it may solve the problem of any value

of a=2bl).
(iv) The present results will revert to the classical ones for aðjX 0 � X jÞ ¼ dðjX 0 � X jÞ.
(v) The results of the stress and the electric displacement at the crack tip tend to decrease with increasing

of the lattice parameter a.
(vi) The stress and the electric displacement at the crack tip increase with increasing of the distance between

two parallel cracks as shown in Figs. 2, 3, 6 and 7. This phenomenon is called crack shielding effect.

1          2           3

0

10

20

τ y
z/

τ 0

x /l

Fig. 9. The stress along the crack line versus x=l for xl=c ¼ 0:2, l ¼ 1:0, a=2bl ¼ 0:0005, h=l ¼ 0:6.

0.8 1.6 2.4

0

3

6

τ y
z/

τ 0

x /l

yzσ

Fig. 8. The stress along the crack line versus x=l for xl=c ¼ 0:2, l ¼ 1:0, a=2bl ¼ 0:0005, h=l ¼ 0:6.
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τ 0
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Fig. 7. The stress at the crack tip versus h=l for l ¼ 1:0, a=2bl ¼ 0:005, xl=c ¼ 0:6.
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(vii) The stress and the electric displacement at the crack tip increase almost linearity with increase of the

crack length as shown in Figs. 4 and 5.

(viii) For the lattice parameter a 6¼ 0, it can be proved that the semi-infinite integration in Eqs. (57) and
(58) and the series in Eqs. (57) and (58) are convergent for any variable x. Therefore the dynamic
stress and the dynamic electric displacement give finite values all along the crack line. Contrary to

the classical piezoelectric theory solution, it is found that no stress and electric displacement singular-

ity are present at the crack tip, and the present results converge to the classical ones far away from the

crack tip as shown in Figs. 8 and 10. The maximum stress does not occur at the crack tip, but slightly

1               2 3
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x/l

D
y
/ τ

0(
10
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)

c
yD

Fig. 10. The electric displacement along the crack line versus x=l for xl=c ¼ 0:2, a=2bl ¼ 0:0005, h=l ¼ 0:6, l ¼ 1:0.
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Fig. 11. The electric displacement along the crack line versus x=l for xl=c ¼ 0:2, a=2bl ¼ 0:0005, h=l ¼ 0:6, l ¼ 1:0.
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Fig. 12. The stress along the crack line versus x=l for xl=c ¼ 0:2, l ¼ 1:0, a=2bl ¼ 0:0005, h=l ¼ 1:5.
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away from it. This phenomenon has been thoroughly substantiated by Eringen (Eringen, 1983). The

distance between the crack tip and the maximum stress point is very small, and it depends on the

crack length and the lattice parameter.

(ix) From the results of Zhou�s paper (Zhou et al., 2001) and the present paper, it can be found that
the electric displacement of the permeable crack surface conditions problem is much smaller than

the result of the impermeable crack surface conditions problem.

(x) The dynamic stress and the electric displacement at the crack tips tend to increase with frequency

reaches a peak, then decreases in magnitude. So the dynamic field will impede or enhance crack pro-
pagation in a piezoelectric material depending on the circular frequency of the incident wave as

shown in Fig. 14.
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Fig. 13. The electric displacement along the crack line versus x=l for xl=c ¼ 0:2, a=2bl ¼ 0:0005, h=l ¼ 1:5, l ¼ 1:0.
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Fig. 14. The stress at the crack tip versus xl=c for l ¼ 1:0, a=2bl ¼ 0:0005, h=l ¼ 0:6.
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